

BTA16 B BTB16 B

STANDARD TRIACS

FEATURES

- HIGH SURGE CURRENT CAPABILITY
- COMMUTATION : (dV/dt)c > 10V/µs
- BTA Family : INSULATING VOLTAGE = 2500V(RMS) (UL RECOGNIZED : E81734)

DESCRIPTION

The BTA/BTB16 B triac family are high performance glass passivated PNPN devices.

These parts are suitables for general purpose applications where high surge current capability is required. Application such as phase control and static switching on inductive or resistive load.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter		Value	Unit	
IT(RMS)	RMS on-state current (360° conduction angle)	BTA	Tc = 80 °C	16	A
		втв	Tc = 90 °C		
ITSM	Non repetitive surge peak on-state current (Tj initial = 25°C)		tp = 8.3 ms	170	_ ^
			tp = 10 ms	160	
1 ² t	l ² t value		tp = 10 ms	128	A ² s
di/dt	Critical rate of rise of on-state current Gate supply : $I_G = 500mA$ diG/dt = 1A/µs		Repetitive F ≈ 50 Hz	10	A/µs
			Non Repetitive	50]
Tstg Tj	Storage and operating junction temperature range			- 40 to + 150 - 40 to + 125	°℃ ℃
TI	Maximum lead temperature for soldering during 10 s at 4.5 mm from case			230	°C

Symbol	Parameter		Unit			
		400	600	700	800	1
VDRM VRRM	Repetitive peak off-state voltage Tj = 125 °C	400	600	700	800	v

July 1991

1/5

This datasheet has been downloaded from http://www.digchip.com at this pages

BTA16 B / BTB16 B

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit	
Rth (j-a)	Junction to ambient		60	°C/W
Rth (j-c) DC	Junction to case for DC	BTA	2.9	°C/W
		BTB	2.3	
Rth (j-c) AC	Junction to case for 360° conduction angle (F= 50 Hz)	BTA	2.2	°C/W
		втв	1.75	1

GATE CHARACTERISTICS (maximum values)

 $P_{G}(AV) = 1W$ $P_{GM} = 40W (tp = 20 \ \mu s)$ $I_{GM} = 6A (tp = 20 \ \mu s)$ $V_{GM} = 16V (tp = 20 \ \mu s)$.

ELECTRICAL CHARACTERISTICS

Symbol	Test Conditions		Quadrant		Suffix	Unit
				B		
IGT	V _D =12V (DC) RL=33Ω	Tj=25℃	1-11-11	MAX	50	mA
			iv	MAX	100	
VGT	V _D =12V (DC) RL≈33Ω	Tj=25℃	1-11-111-IV	МАХ	1.5	v
VGD	VD=VDRM RL=3.3kΩ	Tj=125℃	1-11-111-1V	MIN	0.2	v
tgt	VD=VDRM IG = 500mA dIG/dt = 3A/µs	Tj=25℃	1-11-111-IV	түр	2	μs
<u>ار</u>	IG=1.2 IGT	Tj=25℃	1-111-IV	ТҮР	40	mA
			11		70	
и.	IT= 500mA gate open	Tj=25℃		МАХ	50	mA
v _{тм} •	I _{TM} ≈ 22.5A tp = 380µs	Tj =25 ℃		МАХ	1.6	v
DRM	VDRM Rated VRRM Rated	Tj=25℃		MAX	0.01	mA
RRM		Tj=125°C		мах	2	
dV/dt ⁺	Linear slope up to VD=67%VDRM gate open	Tj=125℃		MIN	250	V/µs
(dV/dt)c *	(dl/dt)c = 7A/ms	Tj=125℃		MIN	10	V/µs

* For either polarity of electrode A2 voltage with reference to electrode A1.

Flg.1 : Maximum RMS power dissipation versus RMS on-state current (F=50Hz). (Curves are cut off by (dl/dt)c limitation)

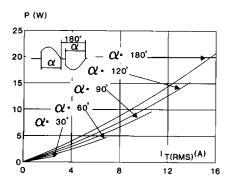


Fig.3 : Correlation between maximum RMS power dissipation and maximum allowable temperatures (Tamb and T_{Case}) for different thermal resistances heatsink + contact (BTB).

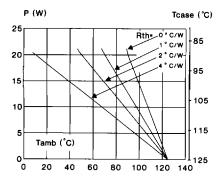
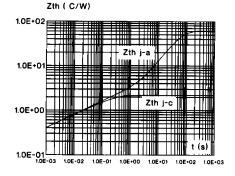



Fig.5 : Thermal transient impedance junction to case and junction to ambient versus pulse duration. (Zth j-c : BTA version only)

Fig.2 : Correlation between maximum RMS power dissipation and maximum allowable temperatures (T_{amb} and T_{case}) for different thermal resistances heatsink + contact (BTA).

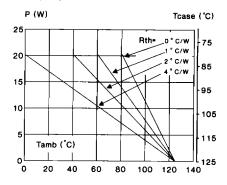


Fig.4 : RMS on-state current versus case temperature.

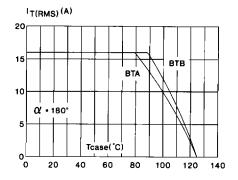


Fig.6 : Relative variation of gate trigger current and holding current versus junction temperature.

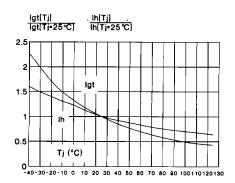


Fig.7 : Non Repetitive surge peak on-state current versus number of cycles.

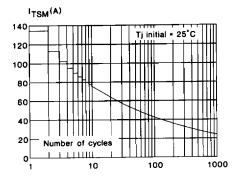


Fig.9 : On-state characteristics (maximum values).

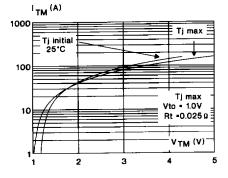
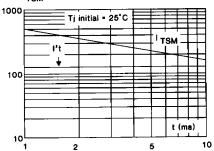
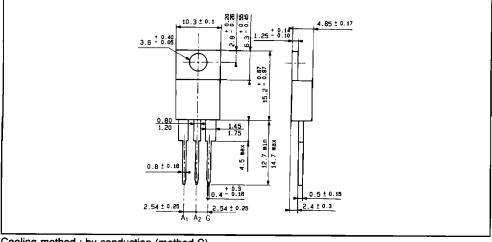



Fig.8 : Non repetitive surge peak on-state current for a sinusoidal pulse with width : t \leq 10ms, and corresponding value of I²t.



PACKAGE MECHANICAL DATA (in millimeters)

TO 220 AB Plastic

Cooling method : by conduction (method C) Marking : type number Weight : 2 g

