

PM2.5 Air Quality Sensor
Created by lady ada

https://learn.adafruit.com/pm25-air-quality-sensor

Last updated on 2022-12-01 03:08:44 PM EST

©Adafruit Industries Page 1 of 15

3

4

8

12

15

Table of Contents

Overview

Arduino Code

• Wiring

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• CircuitPython & Python Usage

• CircuitPython Microcontroller

• Linux/Computer/Raspberry Pi with Python

Usage Notes

Downloads

• Files:

©Adafruit Industries Page 2 of 15

Overview

Breathe easy, knowing that you can track and sense the quality of the air around you

with the PM2.5 Air Quality Sensor with Breadboard Adapter particulate sensor. Mad

Max & Furiosa definitely should have hooked up one of these in their truck while

scavenging the dusty desert wilderness of post-apocalyptic Australia (). And for those

of us not living in an Outback dystopia, this sensor + adapter kit is great for

monitoring air quality, and super easy to use!

WITNESS real-time, reliable measurement of PM2.5 dust concentrations! (PM2.5

refers to particles that are 2.5 microns or smaller in diameter.) This sensor uses laser

scattering to radiate suspending particles in the air, then collects scattering light to

obtain the curve of scattering light change with time. The microprocessor calculates

equivalent particle diameter and the number of particles with different diameter per

unit volume.

©Adafruit Industries Page 3 of 15

https://en.wikipedia.org/wiki/Mad_Max
https://en.wikipedia.org/wiki/Mad_Max
https://en.wikipedia.org/wiki/Mad_Max

You'll need to hook this up to a microcontroller with UART input (or you could

theoretically wire it up to a USB-Serial converter and parse the data on a computer ())

- we have code for both Arduino and CircuitPython. 9600 baud data streams out once

per second, you'll get:

PM1.0, PM2.5 and PM10.0 concentration in both standard & enviromental units

Particulate matter per 0.1L air, categorized into 0.3um, 0.5um, 1.0um, 2.5um,

5.0um and 10um size bins

As well as checksum, in binary format (its fairly easy to parse the binary format, but it

doesn't come out as pure readable ascii text)

We give you the sensor box as well as the cable and a 0.1" / 2.54mm breakout board

so you can wire it easily. You only need power plus one data pin (for the UART TX).

Power is 5V, logic is 3.3V

Arduino Code

Using the PM2.5 with Arduino is a simple matter of wiring up it to your Arduino-

compatible microcontroller, installing the Adafruit PM25AQI () library we've written,

and running the provided example code.

This code will get you started with any Arduino compatible (e.g. Arduino UNO,

Adafruit Metro, ESP8266, Teensy, etc. As long as you have either a hardware serial or

software serial port that can run at 9600 baud.

•

•

©Adafruit Industries Page 4 of 15

https://www.adafruit.com/product/3309
https://www.adafruit.com/product/3309
https://github.com/adafruit/Adafruit_PM25AQI

Wiring

Wiring is simple! Power the sensor with +5V and GND and then connect the data out

pin (3.3V logic) to the serial input pin you'll use. Whether or not you are using

hardware or software UART/serial may affect the pin, so adjust that as necessary. This

wiring works for ATMega328P-based boards for sure, with Digital #2 as the data pin:

/* Test sketch for Adafruit PM2.5 sensor with UART or I2C */

#include "Adafruit_PM25AQI.h"

// If your PM2.5 is UART only, for UNO and others (without hardware serial)

// we must use software serial...

// pin #2 is IN from sensor (TX pin on sensor), leave pin #3 disconnected

// comment these two lines if using hardware serial

//#include <SoftwareSerial.h>

//SoftwareSerial pmSerial(2, 3);

Adafruit_PM25AQI aqi = Adafruit_PM25AQI();

void setup() {

 // Wait for serial monitor to open

 Serial.begin(115200);

 while (!Serial) delay(10);

 Serial.println("Adafruit PMSA003I Air Quality Sensor");

 // Wait one second for sensor to boot up!

 delay(1000);

 // If using serial, initialize it and set baudrate before starting!

 // Uncomment one of the following

 //Serial1.begin(9600);

 //pmSerial.begin(9600);

 // There are 3 options for connectivity!

 if (! aqi.begin_I2C()) { // connect to the sensor over I2C

 //if (! aqi.begin_UART(&Serial1)) { // connect to the sensor over hardware serial

To use this example with the PM2.5 sensor, you'll need to make some changes.

©Adafruit Industries Page 5 of 15

 //if (! aqi.begin_UART(&pmSerial)) { // connect to the sensor over software

serial

 Serial.println("Could not find PM 2.5 sensor!");

 while (1) delay(10);

 }

 Serial.println("PM25 found!");

}

void loop() {

 PM25_AQI_Data data;

 if (! aqi.read(&data)) {

 Serial.println("Could not read from AQI");

 delay(500); // try again in a bit!

 return;

 }

 Serial.println("AQI reading success");

 Serial.println();

 Serial.println(F("---------------------------------------"));

 Serial.println(F("Concentration Units (standard)"));

 Serial.println(F("---------------------------------------"));

 Serial.print(F("PM 1.0: ")); Serial.print(data.pm10_standard);

 Serial.print(F("\t\tPM 2.5: ")); Serial.print(data.pm25_standard);

 Serial.print(F("\t\tPM 10: ")); Serial.println(data.pm100_standard);

 Serial.println(F("Concentration Units (environmental)"));

 Serial.println(F("---------------------------------------"));

 Serial.print(F("PM 1.0: ")); Serial.print(data.pm10_env);

 Serial.print(F("\t\tPM 2.5: ")); Serial.print(data.pm25_env);

 Serial.print(F("\t\tPM 10: ")); Serial.println(data.pm100_env);

 Serial.println(F("---------------------------------------"));

 Serial.print(F("Particles > 0.3um / 0.1L air:"));

Serial.println(data.particles_03um);

 Serial.print(F("Particles > 0.5um / 0.1L air:"));

Serial.println(data.particles_05um);

 Serial.print(F("Particles > 1.0um / 0.1L air:"));

Serial.println(data.particles_10um);

 Serial.print(F("Particles > 2.5um / 0.1L air:"));

Serial.println(data.particles_25um);

 Serial.print(F("Particles > 5.0um / 0.1L air:"));

Serial.println(data.particles_50um);

 Serial.print(F("Particles > 10 um / 0.1L air:"));

Serial.println(data.particles_100um);

 Serial.println(F("---------------------------------------"));

 delay(1000);

}

Comment out the following line by adding " // " before it:

if (! aqi.begin_I2C()) { // connect to the sensor over I2C

Uncomment the following lines by removing the " // " from the beginning:

//#include <SoftwareSerial.h>

//SoftwareSerial pmSerial(2, 3);

 //pmSerial.begin(9600);

©Adafruit Industries Page 6 of 15

 //if (! aqi.begin_UART(&pmSerial)) { // connect to the sensor over software

serial

Once the changes are made, upload this code to your board, and open up the serial

console at 115200 baud. You'll see data printed out once a second, with all the

measurements. For a clean-air indoor room you'll see something like this:

If you hold up a smoking soldering iron or something else that creates a lot of dust,

you'll see much higher numbers!

Note that the numbers are very precise looking but we don't believe that they're

going to be perfectly accurate, calibration may be necessary!

©Adafruit Industries Page 7 of 15

Python & CircuitPython

It's easy to use the PM2.5 and the Adafruit CircuitPython PM25 () module. This library

allows you to easily write Python code that reads particle concentrations, and particle

diameter and the number of particles with different diameters per unit volume.

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

CircuitPython Microcontroller Wiring

First, connect the sensor to your microcontroller board using UART (a serial port).

Here is an example of it connected to a Feather M0 using UART:

Sensor VCC to board 5V

Sensor GND to board GND

Sensor TX to board RX

Remember: RX does not connect to RX!

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Here you have two options: An external USB-to-serial converter, or the built-in UART

on the Pi's RX pin. Here's an example of wiring up the USB-to-serial converter ():

©Adafruit Industries Page 8 of 15

https://github.com/adafruit/Adafruit_CircuitPython_PM25
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/49960
https://learn.adafruit.com//assets/49960
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://www.adafruit.com/product/954

Sensor VCC to USB 5V

Sensor GND to USB GND

Sensor TX to USB RX (white wire)

Remember: RX does not connect to RX!

Here's an example using the Pi's built-in UART:

Sensor VCC to Pi 5V

Sensor GND to Pi GND

Sensor TX to Pi RX

Remember: RX does not connect to RX!

If you want to use the built-in UART, you'll need to disable the serial console and

enable the serial port hardware in raspi-config. See the UART/Serial section of the

CircuitPython on Raspberry Pi guide () for detailed instructions on how to do this.

CircuitPython & Python Usage

To demonstrate the PM2.5 in CircuitPython and Python, let's look at a complete

program example.

For single board computers other than the Raspberry Pi, the serial port may be

tied to the console or not be available to the user. Please see the board

documentation to see how the serial port may be used

To use the pm25_simpletest.py with the PM2.5 sensor, you'll have to make some

changes.

©Adafruit Industries Page 9 of 15

https://learn.adafruit.com//assets/83708
https://learn.adafruit.com//assets/83708
https://learn.adafruit.com//assets/83709
https://learn.adafruit.com//assets/83709
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/uart-serial
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/uart-serial

CircuitPython Microcontroller

With a CircuitPython microcontroller, save this file as code.py on your board. Then

comment out the following lines by inserting a ' # ' before each one:

i2c = busio.I2C(board.SCL, board.SDA, frequency=100000)

pm25 = adafruit_pm25.i2c.PM25_I2C(i2c, reset_pin)

And uncomment the following lines by removing the ' # ' (hash and space both!)

before each one:

uart = busio.UART(board.TX, board.RX, baudrate=9600)

pm25 = adafruit_pm25.uart.PM25_UART(uart, reset_pin)

Then, open up the serial console () to see its output.

Linux/Computer/Raspberry Pi with Python

When using a USB to serial cable or a Raspberry Pi, comment out the following lines

by inserting a ' # ' before each one:

i2c = busio.I2C(board.SCL, board.SDA, frequency=100000)

pm25 = adafruit_pm25.i2c.PM25_I2C(i2c, reset_pin)

For Raspberry Pi, uncomment the following lines by removing the ' # ' (hash and

space both!) before each one:

import serial

uart = serial.Serial("/dev/ttyS0", baudrate=9600, timeout=0.25)

For a USB to serial cable, uncomment the following lines by removing the ' # ' (hash

and space both!) before each one:

import serial

uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=0.25)

Install the python serial with library with

pip3 install pyserial

©Adafruit Industries Page 10 of 15

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

Now you're ready to run the program with the following command:

python3 pm25_simpletest.py

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

Example sketch to connect to PM2.5 sensor with either I2C or UART.

"""

pylint: disable=unused-import

import time

import board

import busio

from digitalio import DigitalInOut, Direction, Pull

from adafruit_pm25.i2c import PM25_I2C

reset_pin = None

If you have a GPIO, its not a bad idea to connect it to the RESET pin

reset_pin = DigitalInOut(board.G0)

reset_pin.direction = Direction.OUTPUT

reset_pin.value = False

For use with a computer running Windows:

import serial

uart = serial.Serial("COM30", baudrate=9600, timeout=1)

For use with microcontroller board:

(Connect the sensor TX pin to the board/computer RX pin)

uart = busio.UART(board.TX, board.RX, baudrate=9600)

For use with Raspberry Pi/Linux:

import serial

uart = serial.Serial("/dev/ttyS0", baudrate=9600, timeout=0.25)

For use with USB-to-serial cable:

import serial

uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=0.25)

Connect to a PM2.5 sensor over UART

from adafruit_pm25.uart import PM25_UART

pm25 = PM25_UART(uart, reset_pin)

Create library object, use 'slow' 100KHz frequency!

i2c = busio.I2C(board.SCL, board.SDA, frequency=100000)

Connect to a PM2.5 sensor over I2C

pm25 = PM25_I2C(i2c, reset_pin)

print("Found PM2.5 sensor, reading data...")

while True:

 time.sleep(1)

 try:

 aqdata = pm25.read()

 # print(aqdata)

 except RuntimeError:

 print("Unable to read from sensor, retrying...")

 continue

 print()

 print("Concentration Units (standard)")

©Adafruit Industries Page 11 of 15

 print("---------------------------------------")

 print(

 "PM 1.0: %d\tPM2.5: %d\tPM10: %d"

 % (aqdata["pm10 standard"], aqdata["pm25 standard"], aqdata["pm100

standard"])

)

 print("Concentration Units (environmental)")

 print("---------------------------------------")

 print(

 "PM 1.0: %d\tPM2.5: %d\tPM10: %d"

 % (aqdata["pm10 env"], aqdata["pm25 env"], aqdata["pm100 env"])

)

 print("---------------------------------------")

 print("Particles > 0.3um / 0.1L air:", aqdata["particles 03um"])

 print("Particles > 0.5um / 0.1L air:", aqdata["particles 05um"])

 print("Particles > 1.0um / 0.1L air:", aqdata["particles 10um"])

 print("Particles > 2.5um / 0.1L air:", aqdata["particles 25um"])

 print("Particles > 5.0um / 0.1L air:", aqdata["particles 50um"])

 print("Particles > 10 um / 0.1L air:", aqdata["particles 100um"])

 print("---------------------------------------")

You should see output looking something like the following:

That's all there is to using the PM2.5 air quality sensor with CircuitPython!

Usage Notes

StanJ wrote up an amazing analysis report of using the PM2.5 sensor in their lab (),

and we think its helpful for others to understand what and how the sensor works and

what to expect from it! We've duplicated it here as well:

I've read quite a lot on the PlanTower sensors, although I'm nothing like an

expert :-). The CF readings are 'Calibration Factory' and aren't useful; the

'Environmental' or 'Ambient' concentration readings are the data you want

for air quality measurements. I'm using the PMS5003 for a continuous

check on cleanroom quality, so I only use the raw Particle Counts as that's

the measurement specified in ISO 14644-1 .

As Solaria123 noted in viewtopic.php?f=19&t=135496 (), the sensor estimate

©Adafruit Industries Page 12 of 15

https://forums.adafruit.com/viewtopic.php?f=48&t=136528&p=767725#p767725
https://forums.adafruit.com/viewtopic.php?f=48&t=136528&p=767725#p767725
https://forums.adafruit.com/viewtopic.php?f=19&t=135496

s particles > 2.5um and doesn't (or can't) measure them. The article at

ResearchGate showed that a concentration composed solely of larger

particles wasn't seen by the sensor. For our cleanroom use that's OK as the

HEPA filters are more efficient as the particle size increases. For non-

filtered air it's a bit more of concern as the different particle sizes are

composed of different pollutants, so you might be missing a pollutant if it's

composed primarily of larger particles like pollen.

One amusing note in the translated PlanTower datasheet is "Only the

consistency among the PM sensors of PLANTOWER is promised and

ensured. And the sensor should not be checked with any third party

equipment." Several groups including AQICN.org have done exactly that,

and we have as well. The PlanTower sensor compares favorably with the

readings from our calibrated Beckman Particle Counter, although the

30-50% uncertainty on the PlanTower 0.3 and 0.5 um bins means you can't

get an exact comparison. We're only using the sensor for a rough check on

current air quality, not to verify compliance with ISO 14644.

A frustrating artifact of the PlanTower sensor is the sampling rate versus

data output. With small change between readings the sensor only updates

the counts every 2.3 seconds, although it outputs data every second. That

means it may duplicate over half of the data, with no way to verify whether

any reading is a duplicate. For a normal home or outdoor setting you could

simply discard any reading when the checksum is identical to the previous

©Adafruit Industries Page 13 of 15

data, as you're highly unlikely to have two successive samples with the

same values. In a cleanroom we're looking at very low particle counts, and

two successive samples might well be identical. The only way I could get

around that is by throwing away 2 of every 3 data packets to insure I'm

getting real counts, which increases the total sample time. I add the results

from 100 unique 0.1 liter samples to get a reading of particles in 10 liters of

air for my measurement, which means 300 samples with 2/3rds of the data

thrown away.

 amb=[003a 005c 0061] raw=[386a 1160 0325 004c 000b 0001] csum=0542

 amb=[003b 005d 0063] raw=[38cd 1175 033c 0054 000e 0004] csum=05ea

 amb=[003c 0060 0065] raw=[398a 11ba 033c 0054 000a 0003] csum=05f4

 amb=[003c 0060 0066] raw=[3a8c 120f 0340 0050 000d 0003] csum=0555

 amb=[003d 0060 0066] raw=[3b04 122e 0333 0050 000d 0003] csum=04e1

 amb=[003c 005e 0064] raw=[3b04 122a 0339 0056 000b 0003] csum=04dc

 amb=[003c 005e 0064] raw=[3b04 122a 0339 0056 000b 0003] csum=04dc duplicate

 amb=[003c 005e 0064] raw=[3b04 122a 0339 0056 000b 0003] csum=04dc duplicate

 amb=[003c 005c 0062] raw=[3b22 1232 0330 004b 000a 0003] csum=04e2

 amb=[003c 005c 0062] raw=[3b22 1232 0330 004b 000a 0003] csum=04e2 duplicate

 amb=[003c 005c 0062] raw=[3b22 1232 0330 004b 000a 0003] csum=04e2 duplicate

 amb=[003b 0059 005f] raw=[3a7a 1211 030e 0043 000a 0003] csum=04de

 amb=[003a 0058 005e] raw=[3a7a 1211 030e 0043 000a 0003] csum=04d8

 amb=[003a 0058 005e] raw=[3a7a 1211 030e 0043 000a 0003] csum=04d8 duplicate

 amb=[003a 0058 005e] raw=[3a35 11fa 030c 003b 0009 0003] csum=056e

What you're seeing above is the 1 second data window sliding along the

(typical) 2.3 second sampling window. When the data changes significantly

between samples the sensor shortens the sample window to 200-800ms,

which may be why the first 6 data points show unique numbers (faster

sampling rate).

The readings above are in my home, and I smoke so the particle counts

vary wildly about 1000:1 over time with a decent quality air filter. When I'm

home I run the air handler fan continuously to level out the temperature

over the house, and when I'm away I let the fan cycle with the AC or heat.

You can see the difference below in how rapidly the particle counts fall off

with continuous filtering. The rapid fall off continuous curve is [sleeping],

and the slow fall off is cycling [away from home]. Data points are every 30

minutes.

©Adafruit Industries Page 14 of 15

Downloads

Files:

PMS5003 Datasheet / Manual ()

•

©Adafruit Industries Page 15 of 15

https://cdn-shop.adafruit.com/product-files/3686/plantower-pms5003-manual_v2-3.pdf

	PM2.5 Air Quality Sensor
	Table of Contents
	Overview
	Arduino Code
	Python & CircuitPython
	Usage Notes
	Downloads

	Overview
	Arduino Code
	Wiring
	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython & Python Usage
	CircuitPython Microcontroller
	Linux/Computer/Raspberry Pi with Python

	Usage Notes
	Downloads
	Files:

